APPROXIMATE EULER-LAGRANGE-JENSEN TYPE ADDITIVE MAPPING IN MULTI-BANACH SPACES: A FIXED POINT APPROACH
نویسندگان
چکیده
منابع مشابه
Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach
Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces:begin{equation} sum_{ j = 1}^{n}fBig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}Big) =(n-6) fBig(sum_{ i = 1}^{n} x_{i}Big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}
متن کاملapproximate a quadratic mapping in multi-banach spaces, a fixed point approach
begin{abstract}using the fixed point method, we prove the generalized hyers--ulam--rassiasstability of the following functional equation in multi-banach spaces:begin{equation} sum_{ j = 1}^{n}fbig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}big) =(n-6) fbig(sum_{ i = 1}^{n} x_{i}big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}end{abstract}
متن کاملApproximate multi-additive mappings in 2-Banach spaces
A mapping $f:V^n longrightarrow W$, where $V$ is a commutative semigroup, $W$ is a linear space and $n$ is a positive integer, is called multi-additive if it is additive in each variable. In this paper we prove the Hyers-Ulam stability of multi-additive mappings in 2-Banach spaces. The corollaries from our main results correct some outcomes from [W.-G. Park, Approximate additive mappings i...
متن کاملApproximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras
Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
متن کاملapproximate multi-additive mappings in 2-banach spaces
a mapping $f:v^n longrightarrow w$, where $v$ is a commutative semigroup, $w$ is a linear space and $n$ is a positive integer, is called multi-additive if it is additive in each variable. in this paper we prove the hyers-ulam stability of multi-additive mappings in 2-banach spaces. the corollaries from our main results correct some outcomes from [w.-g. park, approximate additive mappings i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the Korean Mathematical Society
سال: 2013
ISSN: 1225-1763
DOI: 10.4134/ckms.2013.28.2.319